

Thermal Signature of Subsurface Fluid Flow in the Dixie Valley Geothermal Field, Nevada

Colin F. Williams
USGS, Menlo Park, CA

Outline

- 1. Introduction What, Where, Why
- 2. Data
- 3. Thermal Effects of Wellbore Flow
- 4. Thermal Effects of Flow up the SFZ
- 5. Seismic Evidence of Deep Crustal Thermal Conditions
- 6. Conclusions and Suggestions for Future Work

Heat Flow from Basement Rocks in the Dixie Valley Region

Heat Flow in Dixie Valley

portion of reservoir

Candidate wells for reservoir stimulation

Power plant

CROSS SECTION: DIXIE VALLEY, NEVADA, GEOTHERMAL FIELD

Reservoir Temp: 220 - 250^O C at 2.3 - 3.0 km

Ramey Model for Thermal Effects of Wellbore Flow

$$T(z) = T(0) + \Gamma \cdot (z - z_f) - (\exp((z - z_f)/A) - 1) \cdot \Gamma A$$

where

$$A = v \mathbf{r}_f C \ r \ f(t) / 2 \mathbf{l}$$

 $at/r^2 > 1000$

(weeks to months)

$$f(t) = -\ln(r/2\sqrt{at}) - 0.2885$$

Results -

Estimated Flow Rates

Well 45-14 - ~1.1 liters/sec or 14 gpm Well 66-21 - ~0.17 liters/sec or 2.5 gpm (1.8 gpm measured)

Estimated Heat Flow

Well $62-21 - 90 \,\mathrm{mWm^{-2}}$

Well 76-28 - ~110 mWm⁻²

Well 45-14 - ~140 mWm⁻²

Well 66-21 - $\sim 130 \,\mathrm{mWm^{-2}}$

Heat Flow in Dixie Valley

Power plant

portion of reservoir

Candidate wells for reservoir stimulation

For heat flow above an inclined fracture with upward flow

$$\Delta q = WC_f \Gamma \sin \boldsymbol{q}$$

 $W=1.4-3.5 \times 10^{-4} \text{ kgm}^{-1}\text{s}^{-1}$, which equates to 4.4 to 11 m³/yr for each meter of fault length.

Within DVGF – $Q = 200 \text{ to } > 300 \text{ mWm}^{-2}$

Upflow W = 23 to $46 \text{ m}^3/\text{yr}$

Conclusions

- 1. Flowing well temperatures can yield useful information on fluid entries and undisturbed gradients
- 2. Evidence for elevated temperatures and heat flow southwest of the DVGF (45-14, 66-21), but anomalies confined in extent
- 3. DVGF within BMH and historical seismicity to the south is consistent with high heat flow
- 4. If DVGF not associated with anomalous crustal thermal conditions, similar systems may be found elsewhere in BMH. Permeability is the key.